The search functionality is under construction.

Author Search Result

[Author] Mamoru SAWAHASHI(116hit)

1-20hit(116hit)

  • Performance of FDE Using Frequency Domain Despreading and Averaging of Cyclic-Shifted CDM Based Pilot Signals for Single-Carrier LOS-MIMO

    Kana AONO  Bin ZHENG  Mamoru SAWAHASHI  Norifumi KAMIYA  

     
    PAPER

      Pubricized:
    2021/03/17
      Vol:
    E104-B No:9
      Page(s):
    1067-1078

    This paper presents the bit error rate (BER) performance of frequency domain equalization (FDE) using cyclic-shifted code division multiplexing (CDM) pilot signals for single-carrier line-of-sight (LOS) - multiple-input multiple-output (MIMO) multiplexing. We propose applying different cyclic-shift resources of the same Zadoff-Chu sequence to transmission-stream-specific pilot signals that are essential for estimating the channel response for FDE and phase noise in LOS-MIMO. To validate the effectiveness of the cyclic-shifted pilot multiplexing, we use partial low-density parity-check (LDPC) coding with double Gray mapping and collaborative decoding. Simulations show that pilot signal multiplexing using a cyclic-shifted Zadoff-Chu sequence, and frequency domain averaging of the estimated channel response are effective in achieving accurate channel estimation for single-carrier LOS-MIMO. We also show that the required received signal-to-noise power ratio at the BER of 10-7 using partial LDPC coding is decreased by more than 6.6dB compared to that without LDPC coding even for the deep notch depth of -20dB regardless of the relationship between the notch frequencies in the direct and cross links for 2×2 LOS-MIMO in a Rummler fading channel. Therefore, we conclude that the CDM-based pilot signal multiplexing with different cyclic shifts is effective in accurately estimating the channel response specific to the combination sets of transmitter and receiver antennas and in achieving a low pilot-overhead loss for single-carrier LOS-MIMO.

  • Radio Access Technologies for Broadband Mobile Communications Open Access

    Mamoru SAWAHASHI  Kenichi HIGUCHI  

     
    INVITED PAPER-Wireless Communication Technologies

      Pubricized:
    2017/03/22
      Vol:
    E100-B No:9
      Page(s):
    1674-1687

    This paper describes the broadband radio access techniques for Universal Mobile Terrestrial Systems (UMTS)/Wideband Code Division Multiple Access (W-CDMA), High-Speed Downlink Packet Access (HSDPA)/High-Speed Uplink Packet Access (HSUPA), Long Term Evolution (LTE), and LTE-Advanced. Major technical pillars are almost identical regardless of the radio access systems of the respective generations. However, the key techniques that provide distinct performance improvements have changed according to the system requirements in each generation. Hence, in this paper, we focus on the key techniques associated with the system requirements. We also describe the requirements, radio access technology candidates, and challenges toward the future 5G systems.

  • Matched Filter-Based RAKE Combiner for Wideband DS-CDMA Mobile Radio

    Satoru FUKUMOTO  Mamoru SAWAHASHI  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E81-B No:7
      Page(s):
    1384-1391

    A RAKE combiner based on a matched filter (MF) can be relatively easily implemented since the despread signal components that have propagated along different paths appear sequentially at the MF output. An important design problem is how to accurately select the paths having sufficiently large signal-to-noise power ratios (SNRs). This paper proposes a simple path selection algorithm that uses two selection thresholds. The first threshold is to select the paths that provide largest SNRs. However, as the total received signal power (sum of the signal powers of all paths) decreases, some of the selected paths become noisy. Therefore, we introduce a second threshold that discards the noisy or noise-only paths from among those selected by the first threshold. We apply the proposed path selection algorithm to a pilot symbol-assisted coherent RAKE combiner and find by computer simulations a near optimum set of the two thresholds in frequency selective multipath Rayleigh fading channels. Several power delay profile shapes are considered. The simulation results demonstrate that the MF-based RAKE combiner with the two selection thresholds can achieve a bit-error-rate (BER) performance close to the ideal case (i. e. , the paths to be used for RAKE combining are selected for each power delay profile such that the required signal energy per information bit-to-noise spectrum density ratio (Eb/N0) is minimized).

  • Performance Comparison between Time-Multiplexed Pilot Channel and Parallel Pilot Channel for Coherent Rake Combining in DS-CDMA Mobile Radio

    Sadayuki ABETA  Mamoru SAWAHASHI  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E81-B No:7
      Page(s):
    1417-1425

    This paper compares the BER performance of two types of pilot channel-based coherent Rake combining achievable by the use of weighted multi-slot averaging (WMSA) channel estimation filter in DS-CDMA transmission links. One is for the time-multiplexed pilot channel and the other is for the parallel pilot channel. The WMSA channel estimation filter weights and averages the received pilot over a period of several slots to improve the BER performance. We propose the WMSA channel estimation filters for time-multiplexed pilot and parallel pilot structures. Achievable BER performance under frequency-selective fading environments is computer simulated. The simulation results show that almost same BER performance can be achieved for both pilot channel structures when the same energy is allocated to the pilot.

  • Coherent Delay-Locked Code Tracking Loop Using Time-Multiplexed Pilot for DS-CDMA Mobile Radio

    Mamoru SAWAHASHI  Fumiyuki ADACHI  Heiichi YAMAMOTO  

     
    PAPER

      Vol:
    E81-B No:7
      Page(s):
    1426-1432

    Pilot symbol-assisted coherent delay-locked code tracking loop (PSA-CDLL) is proposed for DS-CDMA mobile radio. PSA-CDLL applies pilot symbol-assisted coherent channel estimation and uses only the in-phase component of the despread signal for controlling the received spreading code timing. The impact of the multiple access interference (MAI) and background noise can be decreased by about 3 dB compared to non-coherent DLL. The performance of the proposed PSA-CDLL is evaluated by computer simulation. Computer simulation results show that it can significantly reduce the rms tracking jitter of regenerated spreading code replica, thereby improving the bit error rate (BER) performance in fading environments.

  • Field Experiments on Real-Time 1-Gbps High-Speed Packet Transmission in MIMO-OFDM Broadband Packet Radio Access

    Hidekazu TAOKA  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1725-1734

    This paper presents experimental results in real propagation channel environments of real-time 1-Gbps packet transmission using antenna-dependent adaptive modulation and channel coding (AMC) with 4-by-4 MIMO multiplexing in the downlink Orthogonal Frequency Division Multiplexing (OFDM) radio access. In the experiment, Maximum Likelihood Detection employing QR decomposition and the M-algorithm (QRM-MLD) with adaptive selection of the surviving symbol replica candidates (ASESS) is employed to achieve such a high data rate at a lower received signal-to-interference plus background noise power ratio (SINR). The field experiments, which are conducted at the average moving speed of 30 km/h, show that real-time packet transmission of greater than 1 Gbps in a 100-MHz channel bandwidth (i.e., 10 bits/second/Hz) is achieved at the average received SINR of approximately 13.5 dB using 16QAM modulation and turbo coding with the coding rate of 8/9. Furthermore, we show that the measured throughput of greater than 1 Gbps is achieved at the probability of approximately 98% in a measurement course, where the maximum distance from the cell site was approximately 300 m with the respective transmitter and receiver antenna separation of 1.5 m and 40 cm with the total transmission power of 10 W. The results also clarify that the minimum required receiver antenna spacing is approximately 10 cm (1.5 carrier wave length) to suppress the loss in the required received SINR at 1-Gbps throughput to within 1 dB compared to that assuming the fading correlation between antennas of zero both under non-line-of-sight (NLOS) and line-of-sight (LOS) conditions.

  • Investigation of Inter-Node B Macro Diversity for Single-Carrier Based Radio Access in Evolved UTRA Uplink

    Hiroyuki KAWAI  Akihito MORIMOTO  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E93-B No:1
      Page(s):
    125-134

    This paper investigates the gain of inter-Node B macro diversity for a scheduled-based shared channel using single-carrier FDMA radio access in the Evolved UTRA (UMTS Terrestrial Radio Access) uplink based on system-level simulations. More specifically, we clarify the gain of inter-Node B soft handover (SHO) with selection combining at the radio frame length level (=10 msec) compared to that for hard handover (HHO) for a scheduled-based shared data channel, considering the gains of key packet-specific techniques including channel-dependent scheduling, adaptive modulation and coding (AMC), hybrid automatic repeat request (ARQ) with packet combining, and slow transmission power control (TPC). Simulation results show that the inter-Node B SHO increases the user throughput at the cell edge by approximately 10% for a short cell radius such as 100-300 m due to the diversity gain from a sudden change in other-cell interference, which is a feature specific to full scheduled-based packet access. However, it is also shown that the gain of inter-Node B SHO compared to that for HHO is small in a macrocell environment when the cell radius is longer than approximately 500 m due to the gains from hybrid ARQ with packet combining, slow TPC, and proportional fairness based channel-dependent scheduling.

  • Effect of Intra-Subframe Frequency Hopping on Codebook Based Closed-Loop Transmit Diversity for DFT-Precoded OFDMA

    Lianjun DENG  Teruo KAWAMURA  Hidekazu TAOKA  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E95-B No:12
      Page(s):
    3699-3707

    This paper proposes applying intra-subframe frequency hopping (FH) to closed-loop (CL) type transmit diversity using codebook based precoding for a shared channel carrying user traffic data in discrete Fourier transform (DFT)-precoded Orthogonal Frequency Division Multiple Access (OFDMA). In the paper, we present two types of precoding schemes associated with intra-subframe FH: individual precoding vector selection between 2 slots where a 1-ms subframe comprises 2 slots among the reduced precoding codebooks, and common precoding vector selection between 2 slots. We investigate the effect of intra-subframe FH on the codebook based transmit diversity in terms of the average block error rate (BLER) performance while maintaining the same number of feedback bits required for notification of the selected precoding vector as that for the conventional CL transmit diversity without FH. Computer simulation results show that the codebook based transmit diversity with intra-subframe FH is very effective in decreasing the required average received signal-to-noise power ratio (SNR) when the fading maximum Doppler frequency, fD, is higher than approximately 50 Hz both for 2- and 4-antenna transmission in the DFT-precoded OFDMA.

  • Performance of Pilot Symbol-Assisted Coherent Orthogonal Filter Based Rake Receiver Using Fast Transmit Power Control for DS-CDMA Mobile Radio

    Hidehiro ANDOH  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E80-A No:12
      Page(s):
    2455-2463

    The bit error rate (BER) performance against average Eb/No (signal energy per bit-to-noise power spectral density ratio) and the capacity of the pilot symbol-assisted coherent orthogonal filter (PSA-COF) based Rake receiver with fast transmit power control (TPC) are evaluated in DS-CDMA reverse link under multipath Rayleigh fading. Fast TPC, which controls all signals transmitted from users in the same cell or sector such that they are received with equal power at the cell site under fast Rayleigh fading, is essential for the PSA-COF based Rake receiver in the reverse link in order to improve the performance degradation experienced when the received signal level drops due to fading as the transmit power is limited in practical systems. Signal-to interference plus noise power ratio (SINR) based fast transmit power control (TPC) is assumed here. By using the fast TPC in reverse link and applying the PSA-COF based Rake receiver to base station (BS), the transmit power of each mobile station (MS) can be significantly reduced, thus increasing link capacity. It is demonstrated that the capacity of the PSA-COF based Rake receiver is about 1.5 times higher than that of the conventional matched filter (MF) receiver in interference-limited channels.

  • Performance of Star 16QAM Schemes Considering Cubic Metric for Uplink DFT-Precoded OFDMA

    Teruo KAWAMURA  Yoshihisa KISHIYAMA  Mamoru SAWAHASHI  

     
    PAPER-Foundations

      Vol:
    E97-A No:1
      Page(s):
    18-29

    This paper investigates the average block error rate (BLER) performance of star 16QAM schemes considering the effective peak-to-average power ratio (PAPR) criterion called a cubic metric (CM) for uplink discrete Fourier transform (DFT)-precoded orthogonal frequency division multiple access (OFDMA). We clarify the best ring amplitude ratio for the (4, 12) and (8, 8) star 16QAM schemes from the viewpoint of the required average signal-to-noise power ratio (SNR) that satisfy the target average BLER based on link-level simulations. We also validate the agreement of the best ring amplitude ratios with those maximizing the mutual information based throughput. Then, employing the best ring amplitude ratios for the respective coding rates of the turbo code, we show that (8, 8) star 16QAM achieves better average BLER performance compared to that for (4, 12) star 16QAM. Moreover, we show the effectiveness of the (8, 8) star 16QAM scheme compared to square 16QAM in terms of the required average received SNR considering the CM when the coding rate is low such as 1/3 for uplink DFT-precoded OFDMA.

  • Experiments on Adaptive Antenna Array Transmit Diversity in W-CDMA Forward Link

    Atsushi HARADA  Shinya TANAKA  Mamoru SAWAHASHI  Fumiyuki ADACHI  

     
    PAPER

      Vol:
    E85-A No:7
      Page(s):
    1612-1623

    This paper proposes adaptive antenna array transmit diversity (AAA-TD) in the W-CDMA forward link with frequency division duplexing (FDD), based on adaptively-generated receiver antenna weights in the reverse link, which only track the changes in the average signal-to-interference power ratio (SIR) and direction of arrival (DOA) but with the calibration of the phase/amplitude variations of the parallel RF receiver/transmitter circuits corresponding to the number of array antennas. The laboratory and field experimental results exploiting AAA-TD are presented to show the strong multipath interference (MPI) suppression effect especially from high-rate users with large transmission power. Laboratory experiments elucidate that by using AAA-TD with four antennas, the required transmitted SIR before multiplying the transmitter antenna weights at the average BER of 10-3 is decreased by approximately 13 dB compared to that with one omni-directional antenna transmitter. Field experiments also show that although an error floor above 10-2 is observed with one omni-directional antenna transmitter when the transmitted SIR is -12 dB due to severe MPI, no error floor is observed when employing 4-antenna AAA-TD and the loss of the required received signal power at the average BER of 10-3 from the single-user case is suppressed to below approximately 5 dB. Therefore, we show that AAA-TD is very effective in suppressing severe MPI especially from high rate users with large transmission power due to its adaptive main lobe and null steering.

  • Orthogonal Pilot Channel Using Combination of FDMA and CDMA in Single-Carrier FDMA-Based Evolved UTRA Uplink

    Teruo KAWAMURA  Yoshihisa KISHIYAMA  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER-Wireless Communication Technologies

      Vol:
    E91-B No:7
      Page(s):
    2299-2309

    In the Evolved UTRA (UMTS Terrestrial Radio Access) uplink, single-carrier frequency division multiple access (SC-FDMA) radio access was adopted owing to its advantageous low peak-to-average power ratio (PAPR) feature, which leads to wide coverage area provisioning with limited peak transmission power of user equipments. This paper proposes orthogonal pilot channel generation using the combination of FDMA and CDMA in the SC-FDMA-based Evolved UTRA uplink. In the proposed method, we employ distributed FDMA transmission for simultaneous accessing users with different transmission bandwidths, and employ CDMA transmission for simultaneous accessing users with identical transmission bandwidth. Moreover, we apply a code sequence with a good auto-correlation property such as a Constant Amplitude Zero Auto-Correlation (CAZAC) sequence employing a cyclic shift to increase the number of sequences. Simulation results show that the average packet error rate performance using an orthogonal pilot channel with the combination of FDMA and CDMA in a six-user environment, i.e., four users each with a 1.25-MHz transmission bandwidth and two users each with a 5-MHz transmission bandwidth, employing turbo coding with the coding rate of R = 1/2 and QPSK and 16QAM data modulation coincides well with that in a single-user environment with the same transmission bandwidth. We show that the proposed orthogonal pilot channel structure using the combination of distributed FDMA and CDMA transmissions and the application of the CAZAC sequence is effective in the SC-FDMA-based Evolved UTRA uplink.

  • Fast Cell Search Algorithm in Inter-Cell Asynchronous DS-CDMA Mobile Radio

    Kenichi HIGUCHI  Mamoru SAWAHASHI  Fumiyuki ADACHI  

     
    PAPER-Mobile Communication

      Vol:
    E81-B No:7
      Page(s):
    1527-1534

    Inter-cell asynchronous DS-CDMA cellular mobile radio allows continuous system deployment from outdoors to indoors since no outer timing source is required. All the forward link channels(control and traffic channels)of each cell site are first spread by orthogonal short spreading codes and then randomized by a long random code uniquely assigned to each cell site. However, inter-cell asynchronous systems generally require much longer cell search time than inter-cell synchronous systems. This paper proposes a fast cell search algorithm based on the periodic masking of the long random code when transmitting the control channel(CCH)signal. The same short spreading code is used for the CCHs of all cell sites. The same short spreading code periodically appears in the signals transmitted from all cell sites so the mobile station can detect the long random code timing(or more precisely the masking timing)by using a matched filter. By grouping the long random codes used in the system and transmitting a group identification(GI)code from each cell site during the masking period, we can avoid searching all long random codes. This significantly reduces the cell search time. Simulation results demonstrate that cell search can be accomplished in less than 500 ms at 90% of the locations when the number of long random codes(having a repetition period of 10 ms)is 512 and the number of those per group is 32.

  • Comparisons between Common and Dedicated Reference Signals for MIMO Multiplexing Using Precoding in Evolved UTRA Downlink

    Hidekazu TAOKA  Yoshihisa KISHIYAMA  Kenichi HIGUCHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1669-1679

    This paper presents comparisons between common and dedicated reference signals (RSs) for channel estimation in MIMO multiplexing using codebook-based precoding for orthogonal frequency division multiplexing (OFDM) radio access in the Evolved UTRA downlink with frequency division duplexing (FDD). We clarify the best RS structure for precoding-based MIMO multiplexing based on comparisons of the structures in terms of the achievable throughput taking into account the overhead of the common and dedicated RSs and the precoding matrix indication (PMI) signal. Based on extensive simulations on the throughput in 2-by-2 and 4-by-4 MIMO multiplexing with precoding, we clarify that channel estimation based on common RSs multiplied with the precoding matrix indicated by the PMI signal achieves higher throughput compared to that using dedicated RSs irrespective of the number of spatial multiplexing streams when the number of available precoding matrices, i.e., the codebook size, is less than approximately 16 and 32 for 2-by-2 and 4-by-4 MIMO multiplexing, respectively.

  • FOREWORD

    Mamoru SAWAHASHI  Jae Hong LEE  

     
    FOREWORD

      Vol:
    E85-A No:7
      Page(s):
    1435-1435
  • Performance of Broadcast Channel Using Hierarchical Modulation in OFDM Downlink

    Daiki MITAMURA  Mamoru SAWAHASHI  Yoshihisa KISHIYAMA  

     
    PAPER-Wireless Communication Technologies

      Pubricized:
    2023/03/22
      Vol:
    E106-B No:9
      Page(s):
    844-854

    This paper proposes a multiple code block transmission scheme using hierarchical modulation (HM) for a broadcast channel in the orthogonal frequency division multiplexing (OFDM) downlink. We investigate the average bit error rate (BER) performance of two-layer HM using 16 quadrature amplitude modulation (QAM) and three-layer HM using 64QAM in multipath Rayleigh fading channels. In multiple code block transmission using HM, the basic information bits are demodulated and decoded to all users within a cell that satisfy the bit error rate (BER) requirement. Hence, we investigate non-uniform QAM constellations to find one that suppresses the loss in the average BER of the basic information bits for HM to a low level compared to that using the original constellation in which only the basic information bits are transmitted while simultaneously minimizing the loss in the average BER of the secondary and tertiary information bits from the original constellations in which the information bits of the respective layers are transmitted alone. Based on the path loss equations in the Urban Macro and Rural Macro scenarios, we also investigate the maximum distance from a base station (BS) for the information bits of each layer to attain the required average received signal-to-noise power ratio (SNR) that achieves the average BER of 10-3.

  • Likelihood Function for QRM-MLD Suitable for Soft-Decision Turbo Decoding and Its Performance for OFCDM MIMO Multiplexing in Multipath Fading Channel

    Hiroyuki KAWAI  Kenichi HIGUCHI  Noriyuki MAEDA  Mamoru SAWAHASHI  Takumi ITO  Yoshikazu KAKURA  Akihisa USHIROKAWA  Hiroyuki SEKI  

     
    PAPER-MIMO

      Vol:
    E88-B No:1
      Page(s):
    47-57

    This paper proposes likelihood function generation of complexity-reduced Maximum Likelihood Detection with QR Decomposition and M-algorithm (QRM-MLD) suitable for soft-decision Turbo decoding and investigates the throughput performance using QRM-MLD with the proposed likelihood function in multipath Rayleigh fading channels for Orthogonal Frequency and Code Division Multiplexing (OFCDM) multiple-input multiple-output (MIMO) multiplexing. Simulation results show that by using the proposed likelihood function generation scheme for soft-decision Turbo decoding following QRM-MLD in 4-by-4 MIMO multiplexing, the required average received signal energy per bit-to-noise power spectrum density ratio (Eb/N0) at the average block error rate (BLER) of 10-2 at a 1-Gbps data rate is significantly reduced compared to that using hard-decision decoding in OFCDM access with 16 QAM modulation, the coding rate of 8/9, and 8-code multiplexing with a spreading factor of 8 assuming a 100-MHz bandwidth. Furthermore, we show that by employing QRM-MLD associated with soft-decision Turbo decoding for 4-by-4 MIMO multiplexing, the throughput values of 500 Mbps and 1 Gbps are achieved at the average received Eb/N0 of approximately 4.5 and 9.3 dB by QPSK with the coding rate of R = 8/9 and 16QAM with R = 8/9, respectively, for OFCDM access assuming a 100-MHz bandwidth in a twelve-path Rayleigh fading channel.

  • Accurate FFT Processing Window Timing Detection Based on Maximum SIR Criterion in OFCDM Wireless Access

    Satoshi NAGATA  Noriyuki MAEDA  Hiroyuki ATARASHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    552-560

    This paper proposes an accurate Fast Fourier Transform (FFT) window timing detection method based on the maximum signal-to-interference power ratio (SIR) criterion taking into account the received signal and inter-symbol interference power according to different detected FFT window timings in Orthogonal Frequency and Code Division Multiplexing (OFCDM) wireless access. In the proposed method, the SIR of the received signal is estimated using the desired signal power and inter-symbol interference power calculated based on the power delay profile, which is measured by the cross-correlation between the pilot symbol replica and the received signal. Furthermore, since the SIR is calculated only for the received path timing of the first path and those paths exceeding the guard interval duration, the computational complexity of the proposed method is low. Computer simulation results show that the proposed scheme reduces the required average received signal energy per symbol-to-noise power spectrum density ratio (Es/N0) for achieving the average packet error rate of 10-2 by approximately 1.0 dB compared to the conventional method, which detects the forward path timing of the power delay profile (16QAM data modulation, six-path Rayleigh fading channel, and the maximum delay time of 3 µsec (root mean squared (r.m.s.) delay spread of 0.86 µsec)).

  • Field Experiments on Throughput Performance above 100 Mbps in Forward Link for VSF-OFCDM Broadband Wireless Access

    Yoshihisa KISHIYAMA  Noriyuki MAEDA  Kenichi HIGUCHI  Hiroyuki ATARASHI  Mamoru SAWAHASHI  

     
    PAPER

      Vol:
    E88-B No:2
      Page(s):
    604-614

    This paper presents throughput performance along with power profiles in the time and frequency domains over 100 Mbps based on field experiments using the implemented Variable Spreading Factor-Orthogonal Frequency and Code Division Multiplexing (VSF-OFCDM) transceiver with a 100-MHz bandwidth in a real multipath fading channel. We conducted field experiments in which a base station (BS) employs a 120-degree sectored beam antenna with the antenna height of 50 m and a van equipped with a mobile station (MS) is driven at the average speed of 30 km/h along measurement courses that are approximately 800 to 1000 m away from the BS, where most of the locations along the courses are under non-line-of-sight conditions. Field experimental results show that, by applying 16QAM data modulation and Turbo coding with the coding rate of R = 1/2 to a shared data channel together with two-branch antenna diversity reception, throughput over 100 and 200 Mbps is achieved when the average received signal-to-interference plus noise power ratio (SINR) is approximately 6.0 and 14.0 dB, respectively in a broadband channel bandwidth where a large number of paths such as more than 20 are observed. Furthermore, the location probability for achieving throughput over 100 and 200 Mbps becomes approximately 90 and 20% in these measurement courses, which experience a large number of paths, when the transmission power of the BS is 10 W with a 120-degree sectored beam transmission.

  • Field Experiments on Open-Loop Type Transmit Diversity in OFDM Radio Access

    Shohei TSUCHIDA  Mamoru SAWAHASHI  Hidekazu TAOKA  Kenichi HIGUCHI  

     
    PAPER

      Vol:
    E92-B No:5
      Page(s):
    1705-1713

    This paper presents field experiments on open-loop transmit diversity in downlink OFDM based radio access conducted in a measurement course in Yokosuka city near Tokyo. The experimental results obtained under actual propagation channel conditions show that Space Frequency Block Code (SFBC) and the combination of SFBC and Frequency Switched Transmit Diversity (FSTD) (or Cyclic Delay Diversity (CDD)) are the most promising open-loop transmit diversity schemes for two- and four-antenna transmission, respectively, from the viewpoint of the required average received signal-to-noise power ratio (SNR).

1-20hit(116hit)